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Abstract This paper describes a non-linear reaction-diffusion equation, which models how a
substance spreads in the surface of the cortex so as to avoid a massive destruction of neurones
when cerebral tissue is not oxygenated correctly. For the explicit finite differences method, the
necessary stability condition is provided by a reaction-diffusion equation with non-linearity given
by a decreasing function. The solution to the non-linear reaction-diffusion equation of the model
can be obtained via one of the two methods: the finite differences (explicit schema) method and the
Adomian method.

1. Introduction
We present a biological model of the diffusion of a substance that prevents the
death of the cerebral nerve cells when the cerebral tissue is no longer
oxygenated correctly.

The regulation of nitric oxide (NO) in the human organism is a very topical
subject at present. Nitric oxide is a biological regulator having a paradoxical
nature. Given that it regulates blood flow and blood pressure, its presence is
beneficial; in excess, however, it causes cellular death, by deregulating cellular
respiration and producing inflammatory processes in the vascular wall,
neuronal degeneration, etc. A deficiency in nitric oxide is a cardiovascular risk
factor. Deserving researchers in respect to recent research on this subject are
L. Ignarro, F. Murada and R. Furchgott, who received the Nobel Prize for
Medicine in 1998 for their work on NO deficiency in the blood.

One method of cellular death is the formation of toxic substances in the
cerebral tissue. The current hypothesis is that peroxynitrite is formed from
nitric oxide/nitrites and from radical superoxide, both of which are the cells’
response to anoxia (Beckman, 1995). In order to avoid this reaction in the cells,
biologists have tried to restrict the formation of peroxynitrites.

The formation of nitrites in brain cells is an enzymatic phenomenon and the
simplest method for preventing their formation is by using a specific enzyme
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inhibitor called NO-synthase. The inhibitor that is widely used is nitro-arginine
(Iadecola et al., 1994).

In order to penetrate the nitro-arginine to the brain of the rat (our animal
model), we deposited a nitro-arginine solution directly onto the brain as the
only way to ensure a constant concentration of nitro-arginine in the brain tissue
(Greenberg et al., 1997; Michel et al., 1993; Tabrizi-Fard and Funy, 1996). Once
the inhibitor was deposited on the rat’s brain, it spread throughout the cerebral
tissue and penetration to the cells relied on a transport mechanism of the
Michaelis-Menten type (Bradbury, 1979).

2. Mathematical modelling
If we denote the concentration of extra-cellular inhibitor as I (x,t), the equation
that models this chemical phenomenon is a non-linear diffusion-reaction
equation. This equation, in which the coefficient of diffusion has been
calculated experimentally as D ¼ 0.0000038 cm2/s, is as follows:

›I

›t
¼ D

›2I

›x2
2

VI

K þ I
t $ 0; 0 # x # L;

where K ¼ 0:00001074 mM=cm3 and V ¼ 0:9865368 £ 1027 mM=cm3=s=g:
The initial and contour conditions are:

I ðx; 0Þ ¼ C0 expð21; 100xÞ;

I ð0; tÞ ¼ C0; C0 ¼ constant ¼ 0:0091 mM=cm3:

In this equation, the reaction term corresponds to the penetration of the
inhibitor concentrate I (x,t) within the cell, a penetration that takes place at
Michaelis-Menten speed.

This equation has an unique solution (Rozier, 1984).

3. Solution using the finite differences method
The finite differences method is a classical approach to the solution of linear
partial derivative equations. It is an approximate method, given that the partial
derivatives in a point are approximated by a difference quotient over a small
interval (Dautray and Lions, 1990; Euvrard, 1994; Golub and Ortega, 1993;
Marcellán et al., 1990). Depending on the expression of this difference quotient,
there are various versions of the model, among them are the explicit, implicit
and the Crank-Nicolson methods.

For the non-linear case, which is the equation for our model, there is no
general proven theory. The procedure to follow depends on the type of non-
linearity. There are occasions when a linearisation of the problem is
recommended (Smith, 1978). But there are also cases when a generalisation of
the methods indicated previously is possible. We demonstrate that under
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certain hypotheses respecting f, the stability condition r # 1=2 for the linear
case holds for the non-linear equation:

›u

›t
¼ D

›2u

›x2
þ f ðuÞ:

If f (u) is, in fact, decreasing, which happens when the non-linearity is of the
Michaelis-Menten type, the explicit schema of the finite differences method is
stable under the condition r # 1=2:

3.1 Necessary stability condition for the explicit finite differences method in the
case of a reaction-diffusion equation with decreasing non-linearity
Theorem 3.1. Given the equation

›uðx; tÞ

›t
¼ D

›2uðx; tÞ

›x2
þ f ðuðx; tÞÞ 0 # x # 1; t $ 0;

uðx; 0Þ ¼ u0ðxÞ 0 # x # 1;

uð0; tÞ ¼ a uð1; tÞ ¼ b ;t $ 0; a;b constants;

ð1Þ

where D . 0 is the diffusion coefficient and f(u) is a class C 1 non-linear
function of u over an interval V of R such that uðx; tÞ 2V ; ;ðx; tÞ 2 ½0; 1� £
½0;þ1Þ� and f is decreasing; if r # 1=2; r ¼ DDt=D x2 and f 0ðuÞ $ 2r 2 1=Dt
;uðx; tÞ 2V ; then the explicit finite differences schema is stable.

Proof. A whole number N . 0 is selected. Taking D x ¼ 1=N ; Dt . 0 a
grid is drawn in the interval ½0; 1� £ ½0;þ1Þ of step size D x;Dt: A generic
point in the grid has the coordinates ðxi; tjÞ ¼ ðiDx; jDtÞ: The approximation to
the solution u of the equation in equation (1) for the point ðxi; tjÞ is denoted by
uij ¼ uðiD x; jDtÞ i ¼ 0; . . .;N ; j $ 0:

Extending the explicit schema of the finite differences method to the non-
linear equation in equation (1), and denoting k ¼ Dt; h ¼ D x; we have:

uijþ1 2 uij

k
¼ D

ui21j 2 2uij þ uiþ1j

h2
þ f ðuijÞ i ¼ 1; . . .;N 2 1; j . 0;

ui0 ¼ u0ðihÞ; i ¼ 1; . . .;N 2 1;

u0j ¼ a; uNj ¼ b ;j $ 0:

ð2Þ

Summarising we have:

uijþ1 ¼ rui21j þ ð1 2 2rÞuij þ ruiþ1j þ kf ðuijÞ; r ¼
Dk

h2
:

The schema in equation (2) is expressed in matrix form as follows:
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u1jþ1

u2jþ1

u3jþ1

..

.

uN21jþ1

2
666666664

3
777777775
¼

ð1 2 2rÞ r

r ð1 2 2rÞ r

r ð1 2 2rÞ r

. .
. . .

. . .
.

r ð1 2 2rÞ

2
66666664

3
77777775

u1j

u2j

u3j

..

.

uN21j

2
666666664

3
777777775

þ k

f ðu1jÞ

f ðu2jÞ

f ðu3jÞ

..

.

f ðuN21jÞ

2
666666664

3
777777775
þ r

a

0

..

.

0

b

2
66666664

3
77777775
:

In other words,

ujþ1 ¼ Auj þ kFðujÞ þ rB; ð3Þ

where the following notation has been used:

uj ¼

u1j

u2j

u3j

..

.

uN21j

2
66666664

3
77777775
; A ¼

ð1 2 2rÞ r

r ð1 2 2rÞ r

r ð1 2 2rÞ r

. .
. . .

. . .
.

r ð1 2 2rÞ

2
66666664

3
77777775
;

FðujÞ ¼

f ðu1jÞ

f ðu2jÞ

f ðu3jÞ

..

.

f ðuN21jÞ

2
66666664

3
77777775
; B ¼

a

0

..

.

0

b

2
6666664

3
7777775
:

Represented by ujþ1 is the solution vector obtained by the explicit schema for
finite differences in the stage j þ 1; starting off from the initial vector u0. Let us
suppose that a small perturbation is introduced into t ¼ 0; such that u*

0 # u0;
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on the understanding that the inequality is verified on a component-
by-component basis.

Before we look at the stability, we prove that if u*
j # uj in the stage j, then

u*
jþ1 # ujþ1: We will start the calculations using the schema in equation (3),

with the vector of initial values u*
0 such that u*

0 # u0: We thus have

u*
jþ1 ¼ Au*

j þ kFðu*
j Þ þ rB:

We define the error vector e ¼ u 2 u* ; thus,

ejþ1 ¼ ujþ1 2 u*
jþ1 ¼ Aðuj 2 u*

j Þ þ kðFðujÞ2 Fðu*
j ÞÞ: ð4Þ

We want to prove that if ej $ 0 then ejþ1 $ 0; where 0 denotes the null vector
with dimensions N 2 1:

Given that f is class C 1, then f ðuijÞ2 f ðu*
ijÞ ¼ f 0ðwijÞðuij 2 u*

ijÞ; with wij

intermediate between uij and u*
ij: Thus, if we denote the diagonal matrix,

F0ðwjÞ ¼ diagð f 0ðw1jÞ; . . .; f
0ðwN21jÞÞ; the expression in equation (4) is

converted into:

ejþ1 ¼ Aðuj 2 u*
j Þ þ kF0ðwjÞðuj 2 u*

j Þ:

In other words,

ejþ1 ¼ ðA þ kF0ðwjÞÞej: ð5Þ

We will denote as B j the matrix A þ kF0ðwjÞ; and thus equation (5) becomes:

ejþ1 ¼ Bjej: ð6Þ

Since under the hypothesis

f 0ðuÞ $
2r 2 1

k
;uðx; tÞ 2V ;

the proof that Bj $ 0N21; where 0N21 denotes the null matrix of dimensions
N 2 1; is immediate. Thus,

if ej $ 0 then ejþ1 $ 0: ð7Þ

In order to prove stability, we limit the expression in equation (6). Since f is
decreasing, f 0ðuÞ # 0 ;u2V ; which implies that F0ðwjÞ # 0N21: And so Bj #
A and since under the hypothesis r # 1=2; then A $ 0N21: Applying equation
(7) we have:

ejþ1 # Aej:

Repeating the reasoning recursively,
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ejþ1 # Aej # A2ej21 # . . . # Ajþ1e0: ð8Þ

The explicit schema of finite differences will be stable if ej tends to the vector 0
and if j grows indefinitely.

If we denote r (A) as the spectral radius of the matrix A, we know that if

rðAÞ ¼
i¼1;...;N21
maxjlij , 1;

then

j!1
lim Aj ¼ 0N21;

where the values corresponding to the matrix A are represented by li.
Therefore, if r ðAÞ , 1; from equation (8) we can conclude that the schema will
be stable.

Since the values for A are:

li ¼ 1 2 2r þ 2r cos
ip

N
; i ¼ 1; . . .N 2 1;

if 0 , r # 1=2; then it is verified that

22r , 2r cos
ip

N
, 2r;

and thus,

21 , 1 2 2r 2 2r , 1 2 2r þ 2r cos
ip

N
, 1 2 2r þ 2r ¼ 1:

In other words, jlij , 1 ;i ¼ 1; . . .;N 2 1: And so, if r # 1=2; the schema
will be stable. A

Corollary 3.1. Given the equation:

›uðx; tÞ

›t
¼ D

›2uðx; tÞ

›x2
2

Vuðx; tÞ

K þ uðx; tÞ
0 # x # 1; t $ 0

uðx; 0Þ ¼ u0ðxÞ 0 # x # 1

uð0; tÞ ¼ a; uð1; tÞ ¼ b ;t $ 0; a;b constants;

ð9Þ

where D . 0 is the diffusion coefficient and V and K are positive constants;
if r # 1=2; r ¼ DDt=Dx2; then the explicit finite differences schema is stable.

Proof. This is an immediate consequence of Theorem 3.1. Equation (9) is a
special case of equation (1) given that:
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f ðuÞ ¼ 2
Vu

K þ u

is decreasing. A

3.2 Numerical solution using the explicit finite differences method
This is a question of solving, using the explicit schema of the finite differences
method, the following equation:

›I

›t
¼ 0:0000038

›2I

›x2
2

VI

K þ I
0 # x # 0:15; t $ 0

with the initial and contour conditions:

I ðx; 0Þ ¼ 0:0091expð21100xÞ I ð0; tÞ ¼ 0:0091; I ð0:15; tÞ ¼ 0:

The equation discretized by the method is:

uijþ1 ¼ rui21j þ ð1 2 2rÞuij þ ruiþ1j 2 k
Vuij

K þ uij

; r ¼
0:0000038k

h2
;

with the initial and contour conditions:

ui0 ¼ 0:0091expð21100ihÞ; i ¼ 1; . . .;N 2 1;

u0j ¼ 0:0091; uNj ¼ 0 ;j $ 0:

For V and K we will take the values V ¼ 0:9865368 £ 1027 and K ¼
0:00001074 expressed in Section 2.

The condition r # 1=2 ensures the stability of the system.
3.2.1 Numerical results. Taking Dt ¼ 0:5; Dx ¼ 0:00625 and D ¼

3:8 £ 1026; we obtain a value for r ¼ DDt=Dx2 ¼ 0:048640; and thus the
solution is stable. The numerical solution is obtained via MAPLE V and shown
graphically in Figure 1.

The graph represents the diffusion phenomenon modelled using level curves
drawn for several instants of time t : that curves have been calculated every
0.5 s for 20 min and that all of these are shown. The Y axis represents the
concentrations of the inhibitor I, and the X axis represents cortex depth x.

4. Solution using the Adomian method
4.1 Classical presentation of the Adomian method
This method was proposed by the North American physicist, G. Adomian
(1923-1996). It is based on the search for a solution in the form of a series and on
decomposing the non-linear operator into a series in which the terms are
calculated recurrently using Adomian polynomials. Under certain conditions of
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convergence, the sum of the series will give an exact solution, but in practice
the series will be truncated and yet give a good approximation. The truncation
error can generally be calculated.

Let us consider the non-linear functional equation (Adomian, 1983, 1986,
1994; Bellman and Adomian, 1985)

u 2 N ðuðtÞÞ ¼ f ðtÞ; ð10Þ

where N represents a known non-linear operator, f is given for a Banach space
H (N operator of H £ H ).

The problem is to determine the solution u2H of equation (10). The
Adomian method consists of searching for a solution u, if it exists, in the form
of a series

u ¼
X1
n¼0

un; ð11Þ

and decomposing the non-linear term N(u) in the form

N ðuÞ ¼
X1
i¼0

Ai: ð12Þ

Figure 1.
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The Ai are polynomials – called Adomian polynomials – that depend
exclusively on u0; u1; . . .; un and that are obtained from the equations

v ¼
X1
i¼0

l iui; N
X1
i¼0

l iui

 !
¼
X1
i¼0

l iAi ; ð13Þ

where l is a parameter introduced for convenience sake. The An can be
obtained formally from equation (4) (Bellman and Adomian, 1985) using the
expression

n! An ¼
dn

dln
N

Xn

i¼0

l iui

 !" #
l¼0

ð14Þ

Replacing equations (11) and (12) in equation (10), we obtain

X1
n¼0

un 2
X1
n¼0

An ¼ f ð15Þ

The terms of the series
P1
n¼0

un are obtained by identification in equation (15):

u0 ¼ f

u1 ¼ A0

..

.

unþ1 ¼ An

8>>>><
>>>>:

ð16Þ

The series that is the solution of equation (10) is thus determined. Equation (14)
which defines the Aj shows that the Aj depend only on u0; u1; . . .; uj and not on
ujþ1; ujþ2; . . .: For scalar N functions, the An can be found (Abbaoui, 1995) by:

A0ðu0Þ ¼ Nðu0Þ

Anðu0; . . .; unÞ ¼
a1þ...þan¼n

P
N ða1Þðu0Þ

uða12a2Þ
1

ða1 2 a2Þ!
. . .

uðan212anÞ
n21

ðan21 2 anÞ!
·
uan

n

an!

8>><
>>: n – 0

where the succession ðaiÞi¼1;...;n is decreasing.
More information on the Adomian method can be found in Cherruault and

Adomian (1993) and Cherruault et al. (1995). Applications to systems of non-
linear differential equations are discussed in Grimalt and Pujol (1999) and
Guellal et al. (1997), where there is an application to kinetic chemistry.
For applications to partial differential equations see Guellal et al. (2000).
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4.2 Resolution of the non-linear diffusion-reaction equation using the Adomian
method
Let us consider the equation

›I

›t
¼ 0:0000038

›2I

›x2
2

VI

K þ I
t $ 0; 0 # x # L; ð17Þ

with the initial and contour conditions

I ðx; 0Þ ¼ C0 expð21100xÞ;

I ð0; tÞ ¼ C0; C0 ¼ constant ¼ 0:0091 mM=cm3:

Equation (17) is written in canonical form as:

LtI ¼ 0:0000038LxxI 2 N ðI Þ; ð18Þ

where LtI ¼ ›I=›t; LxxI ¼ ›2I=›x2 and NðI Þ ¼ VI=K þ I :
We invert the lesser order operator Lt. In this case, the Adomian schema is

written as:

;n $ 1 In ¼ 0:0000038L21
t LxxIn21 2 L21

t An21:

where L21
t represents the integration in t and An21 are the Adomian

polynomials corresponding to N non-linearity and depending on I0, I 1; . . .; In21:
The Adomian schema, based on equations (15) and (16), is written as:

X1
n¼0

In ¼ I ðx; 0Þ þ 0:0000038L21
t Lxx

X1
n¼0

I n 2 L21
t

X1
n¼0

An;

with

N ðI Þ ¼
X1
n¼0

An ¼
VI

K þ I

I 0 ¼ I ðx; 0Þ ¼ 0:0091 expð21100xÞ

I nþ1 ¼ 0:0000038L21
t LxxIn 2 L21

t An

ð19Þ

and the An are calculated by equation (14).
Therefore, applying equation (19),

I 0 ¼ 0:0091e21100x

I 1 ¼ 0:0418418te21100x 2 91
tV

10000Ke1100x þ 91
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I 2 ¼ t 2ð0:961942982 £ 1011e2200xK 3 þ 0:2626104341 £ 1010e1100xK 2

þ 0:2389754950 £ 108K þ 0:7248923349 £ 105e21100x

2 0:418418 £ 1011e2200xVK 2 þ 0:455 £ 1010V 2Ke2200xÞ=

ð10000Ke1100x þ 91Þ3

and thus the sum of the truncated series gives the following expression for I:

I ¼ 0:0091e21100x þ 0:0418418te21100x 2 91
tV

10000Ke1100x þ 91

þ t 2ð0:961942982 £ 1011e2200xK 3 þ 0:2626104341 £ 1010e1100xK 2

þ 0:2389754950 £ 108K þ 0:7248923349 £ 105e21100x

2 0:418418 £ 1011e2200xVK 2 þ 0:455 £ 1010V 2Ke2200xÞ=

ð10000Ke1100x þ 91Þ3

ð20Þ

The convergence of the series is the consequence of a theorem (Abbaoui et al.,
2001) in which the nth derivative of the non-linear term N ðI Þ ¼ VI=K þ I is
required to be bounded.

5. Comparison of results
The first point of note is that both the solution obtained by the finite differences
method is numerical with space and time discretization, whereas the solution
provided by the Adomian method does not discretize space or time and gives
an analytical solution in the form of a truncated series.

It has been demonstrated that both the methods produce results that are
highly satisfactory, in comparison with the experimental results for
concentrations of the inhibitor I obtained by microvoltametry in the
laboratory. For example, for a depth of x ¼ 0:0125 cm; the results in Table I
were obtained.

Seconds Experimental I (mM/cm3) Adomian I (mM/cm3) Dif finite I (mM/cm3)

0 0 0.9716106491£ 1028 0
60 0.000370 0.0003709583422 0.000369648
120 0.001475 0.001478453962 0.001479623
180 0.003351 0.003322496574 0.003295641
240 0.005910 0.005903086180 0.005900843

Table I.
Comparison of

experimental results
and those obtained

via the Adomian
and finite

differences methods

A non-linear
model of cerebral

diffusion

483



6. Conclusions
A diffusion model is described for a cerebral bio-chemistry problem, based on a
non-linear partial derivative equation.

We have described the solution to the equation obtained by a classical
resolution method in non-linear partial derivative equations – the finite
differences method. We have proved that the said method may also be
extended to non-linear reaction-diffusion partial derivative equations when
non-linearity is a decreasing function. The solution obtained is numerical with
space and time discretization.

The Adomian method is an effective tool for the resolution of certain kinds
of non-linear partial derivative equations. The equation for the model is solved
using the Adomian method, which does not discretize space or time and gives
the analytical solution in the form of a truncated series.

It has been demonstrated that both methods produce results that are highly
satisfactory, in comparison with the experimental results for concentrations of
the inhibitor I obtained by microvoltametry in the laboratory.
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