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Abstract This paper describes a non-linear reaction-diffusion equation, which models how a
substance spreads in the surface of the cortex so as to avoid a massive destruction of neurones
when cerebral tissue is not oxygenated correctly. For the explicit finite differences method, the
necessary stability condition is provided by a reaction-diffusion equation with non-linearity given
by a decreasing function. The solution to the non-linear reaction-diffusion equation of the model
can be obtained via one of the two methods: the finite differences (explicit schema) method and the
Adomian method.

1. Introduction

We present a biological model of the diffusion of a substance that prevents the
death of the cerebral nerve cells when the cerebral tissue is no longer
oxygenated correctly.

The regulation of nitric oxide (NO) in the human organism is a very topical
subject at present. Nitric oxide is a biological regulator having a paradoxical
nature. Given that it regulates blood flow and blood pressure, its presence is
beneficial; in excess, however, it causes cellular death, by deregulating cellular
respiration and producing inflammatory processes in the vascular wall,
neuronal degeneration, etc. A deficiency in nitric oxide is a cardiovascular risk
factor. Deserving researchers in respect to recent research on this subject are
L. Ignarro, F. Murada and R. Furchgott, who received the Nobel Prize for
Medicine in 1998 for their work on NO deficiency in the blood.

One method of cellular death is the formation of toxic substances in the Emerald
cerebral tissue. The current hypothesis is that peroxynitrite is formed from
nitric oxide/nitrites and from radical superoxide, both of which are the cells’
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response to anoxia (Beckman, 1995). In order to avoid this reaction in the cells, " Vethods fcr Heat & Fluid Flow

biologists have tried to restrict the formation of peroxynitrites. Vo e
The formation of nitrites in brain cells is an enzymatic phenomenon and the © MCB UP Limited
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inhibitor called NO-synthase. The inhibitor that is widely used is nitro-arginine
(Iadecola et al., 1994).

In order to penetrate the nitro-arginine to the brain of the rat (our animal
model), we deposited a nitro-arginine solution directly onto the brain as the
only way to ensure a constant concentration of nitro-arginine in the brain tissue
(Greenberg et al., 1997, Michel et al., 1993; Tabrizi-Fard and Funy, 1996). Once
the inhibitor was deposited on the rat’s brain, it spread throughout the cerebral
tissue and penetration to the cells relied on a transport mechanism of the
Michaelis-Menten type (Bradbury, 1979).

2. Mathematical modelling

If we denote the concentration of extra-cellular inhibitor as 7 (x,f), the equation
that models this chemical phenomenon is a non-linear diffusion-reaction
equation. This equation, in which the coefficient of diffusion has been
calculated experimentally as D = 0.0000038 cm?/s, is as follows:

ol 92l %4

o Do kg 120 0=x=L
where K = 0.00001074mM/cm® and V = 0.9865368 X 10~" mM/cm?/s/g.
The 1initial and contour conditions are:

I(x,0) = Cyexp(—1,100x),

1(0,t) = Cy, Cp = constant = 0.0091 mM/cmS.

In this equation, the reaction term corresponds to the penetration of the
inhibitor concentrate [ (x,f) within the cell, a penetration that takes place at
Michaelis-Menten speed.

This equation has an unique solution (Rozier, 1984).

3. Solution using the finite differences method

The finite differences method is a classical approach to the solution of linear
partial derivative equations. It is an approximate method, given that the partial
derivatives in a point are approximated by a difference quotient over a small
interval (Dautray and Lions, 1990; Euvrard, 1994; Golub and Ortega, 1993;
Marcellan et al., 1990). Depending on the expression of this difference quotient,
there are various versions of the model, among them are the explicit, implicit
and the Crank-Nicolson methods.

For the non-linear case, which is the equation for our model, there is no
general proven theory. The procedure to follow depends on the type of non-
linearity. There are occasions when a linearisation of the problem is
recommended (Smith, 1978). But there are also cases when a generalisation of
the methods indicated previously is possible. We demonstrate that under



certain hypotheses respecting f, the stability condition » = 1/2 for the linear
case holds for the non-linear equation:

du 9%u

—=D— )

ot 9x2 W
If £ () 1s, in fact, decreasing, which happens when the non-linearity is of the
Michaelis-Menten type, the explicit schema of the finite differences method is
stable under the condition » = 1/2.

3.1 Necessary stability condition for the explicit finite differences method in the
case of a reaction-diffusion equation with decreasing non-linearity
Theorvem 3.1. Given the equation

du(x,t) D82u(x, t)

ot 952 +fuix,t) 0=x=1, t=0,

D

u(x,0)=uyx) 0=x=1,

u0,t) =« ul,Hh)=pB Vt=0, «,B constants,

where D > 0 is the diffusion coefficient and flu) is a class C! non-linear
function of # over an interval V of R such that u(x,t)e V, V(x,1) €[0,1] X
[0, +00)] and fis decreasing; if » = 1/2,7 = DAt/Ax?andf'(u) = 2r — 1/At
Yu(x,t) € V, then the explicit finite differences schema is stable.

Proof. A whole number N > 0 is selected. Taking Ax =1/N, At >0 a
grid is drawn in the interval [0, 1] X [0, +00) of step size Ax, Af. A generic
point in the grid has the coordinates (x;, {;) = (1Ax,jA?). The approximation to
the solution « of the equation in equation (1) for the point (x;, ;) is denoted by
wj=u(Ax, jAt)1=0,...,N,7 =0.

Extending the explicit schema of the finite differences method to the non-
linear equation in equation (1), and denoting £ = At, 7 = A x, we have:

u“_"_l — U u‘fl‘ _ZM"+MA+1A ; ]
i 2 Y=p>~ hzl] Z ]+f(”ij) 1=1,...N=1, j>0,

Uy = Mo(lh), 1= 1, .. .,N - 1, (2)
Uy = «, MN]':B V; = 0.
Summarising we have:
wipr = rui—1; + (1 = 2w + ruy + kf (wy), 7 =-—

The schema in equation (2) is expressed in matrix form as follows:
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HFF [ wjer | (1 —2r) 7 1[ i ]
13,4 U9j11 7 ad-2» r Uy
Usiv1 | _ 7 aQ-2ry r uz;
476 '
UN-1j+1 I o (=2 | un—yj
[ f(ulj) 1 K2
J (uz)) 0
+k f(ug) +7]|
: 0
Sun—1j) _B |

In other words,
U = Au]' + kF(u]-) + 7B, 3)

where the following notation has been used:

uy; (1 - 2r) r
Ug; 7 a-2» v
uj = usj . A= 7 aQ-2rn r 7
UN—1j r (1—=2r
i f(“lj) ] fa]
S (uz)) 0
: 0
Sun—1j) B

Represented by u;,; is the solution vector obtained by the explicit schema for
finite differences in the stage j + 1, starting off from the initial vector u,. Let us
suppose that a small perturbation is introduced into ¢ = 0, such that ug = uy,



on the understanding that the inequality is verified on a component-
by-component basis.

Before we look at the stability, we prove that if u]* = u; in the stage j, then
u +1 = u;1. We will start the calculations usmg the schema in equation (3),

Wlth the vector of initial values u0 such that uO uy. We thus have
u = Au]f + kF(uj) +7B.
We define the error vector e = u — u*; thus,
e = w1 — u,, = A — ) + kF(w) — Fu))). 4)

We want to prove that if €; = 0 then e;;; = 0, where 0 denotes the null vector
with dimensions N — 1.

Given that f is class C} then Sfuy) — f(u i) = I (wi) (i — u, ), with w;j
intermediate between u; and u.. Thus, if we denote the d1ag0na1 matrix,
F'(w;) = diag(f'(wy)), . . ., f(wN 1])), the expression in equation (4) is
converted into:

1 = A — u;) + £F'(w))(u; — u)).
In other words,
€11 = (A+EkF (w)))e;. (5)
We will denote as B; the matrix A + ZF'(w;), and thus equation (5) becomes:
ej;1 = Bje,. ©6)
Since under the hypothesis

flu) = 277_1 Vu(x,H€EV,

the proof that B; = Oy_1, where Oy_; denotes the null matrix of dimensions
N — 1, is immediate. Thus,

if ¢ =0 then ej;; =0. @)

In order to prove stability, we limit the expression in equation (6). Since f is
decreasing, f'(u) = 0 Vu€V, which implies that F'(w;) = Oy_1. And so B; =
A and since under the hypothesis » = 1/2, then A = Oy_;. Applying equation
(7) we have:

€ = Ae]-.

Repeating the reasoning recursively,
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2 i+1
e = Ae]- =A e 1=...= Al e. )

The explicit schema of finite differences will be stable if e; tends to the vector 0
and if j grows indefinitely.
If we denote p(A) as the spectral radius of the matrix A, we know that if

p(A) = max| )| <1,
i=1,.N1

,,,,

then

lim A7 = Oy_1,

]—»OO

where the values corresponding to the matrix A are represented by A;.
Therefore, if p(A) < 1, from equation (8) we can conclude that the schema will
be stable.

Since the values for A are:

A=1 —27-1—27005%7, i=1,..N-1,
if 0 <7 =1/2, then it is verified that
—2r < ZYCOS%T < 2r,

and thus,
T
—1<1—27—27<1—27+27€05N<1—27+27=1.

In other words, |[\;| <1 Vi=1,...,N — 1. And so, if » = 1/2, the schema
will be stable. O
Corollary 3.1. Given the equation:

qux,t) _ Dazu(x, H  Vu(x,t)

=x=1,t=0
ot ox2 K+ u(x,t) * ’

)

ux,0) =uylx) 0=x=1
u(0,1) = a, ul,ty=B Vt=0, «,B constants,

where D > 0 is the diffusion coefficient and V and K are positive constants;
if = 1/2, r = DAt/Ax?, then the explicit finite differences schema is stable.

Proof.  This is an immediate consequence of Theorem 3.1. Equation (9) is a
special case of equation (1) given that:



Vu
K+u

flu)=—

is decreasing. U]

3.2 Numerical solution using the explicit finite differences method
This is a question of solving, using the explicit schema of the finite differences
method, the following equation:

2
O _ 00000038 2L — VT 0=x=015 ¢=0
ot oxt K+1

with the initial and contour conditions:
I1(x,0) = 0.0091exp(—1100x) 1(0,1) =0.0091, 1(0.15, ¢)=0.
The equation discretized by the method is:

Vi _0.0000038k

Wiy = rui—y; + (1 — 2w + ruiqj — kK e 7 —

with the initial and contour conditions:
o = 0.0091exp(—1100¢2), i=1,....N —1,

g =0.0091, up;=0 Vj=0.

For V and K we will take the values V = 0.9865368 x10~7 and K =
0.00001074 expressed in Section 2.

The condition » = 1/2 ensures the stability of the system.

3.2.1 Numerical results. Taking At = 0.5, Ax=0.00625 and D=
3.8%x107%, we obtain a value for » = DAt/Ax? = 0.048640, and thus the
solution is stable. The numerical solution is obtained via MAPLE V and shown
graphically in Figure 1.

The graph represents the diffusion phenomenon modelled using level curves
drawn for several instants of time f: that curves have been calculated every
0.5s for 20min and that all of these are shown. The Y axis represents the
concentrations of the inhibitor /, and the X axis represents cortex depth x.

4. Solution using the Adomian method

4.1 Classical presentation of the Adomian method

This method was proposed by the North American physicist, G. Adomian
(1923-1996). It is based on the search for a solution in the form of a series and on
decomposing the non-linear operator into a series in which the terms are
calculated recurrently using Adomian polynomials. Under certain conditions of

A non-linear
model of cerebral
diffusion

479




HFF
134

480

Figure 1.
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x (cm)

convergence, the sum of the series will give an exact solution, but in practice
the series will be truncated and yet give a good approximation. The truncation
error can generally be calculated.

Let us consider the non-linear functional equation (Adomian, 1983, 1986,
1994; Bellman and Adomian, 1985)

u— Nu@) = f(1), (10)

where NN represents a known non-linear operator, fis given for a Banach space
H (N operator of H X H).

The problem is to determine the solution # € H of equation (10). The
Adomian method consists of searching for a solution #, if it exists, in the form

of a series
U= Z Uy, 11
n=0

and decomposing the non-linear term N(x) in the form

Nu) = ZAZ, (12)
=0



The A; are polynomials — called Adomian polynomials — that depend
exclusively on ug, u1, ..., u, and that are obtained from the equations

v= g )\iui, N(:EO )\%) = g)\%i, (13)

where A is a parameter introduced for convenience sake. The A, can be
obtained formally from equation (4) (Bellman and Adomian, 1985) using the

expression
‘ 1
nlA, = [ (E A ul> ] . (14)

Replacing equations (11) and (12) in equation (10), we obtain

Z Uy — Z An = f (15)
n=0

The terms of the series > u, are obtained by identification in equation (15):

n=0
u =1
u = AO
(16)
Un+1 = Ay

The series that is the solution of equation (10) is thus determined. Equation (14)
which defines the A; shows that the A; depend only on ug, u1, .. ., #; and not on
Ujt1,Ujs2, . . .. For scalar N functions, the A,, can be found (Abbaoui, 1995) by:

Ao(ug) = N(up)

(al ) (ap—1—ay) @
u, " usn
An(uo, ... uy) = N @(y) n-1 W on#0

ay+..+a,=n (a1 — ao)! (ap—1 — ap)! !

where the succession (;);—; _, is decreasing.

More information on the Adomlan method can be found in Cherruault and
Adomian (1993) and Cherruault et al (1995). Applications to systems of non-
linear differential equations are discussed in Grimalt and Pujol (1999) and
Guellal et al (1997), where there is an application to kinetic chemistry.
For applications to partial differential equations see Guellal et al. (2000).

A non-linear
model of cerebral
diffusion

481




HFF
134

482

4.2 Resolution of the non-linear diffusion-reaction equation using the Adomian
method
Let us consider the equation

ol 02l VI
— = e e — = =x=
57 0.0000038 ol K+ 1=0, 0=x=1L, 17

with the initial and contour conditions
1(x,0) = Cyexp(—1100x),
1(0,t) = Cy, Cy = constant = 0.0091 mM/cmS.
Equation (17) is written in canonical form as:
L = 0.0000038Ly,I — N(I), (18)

where L = 0l /ot, Ly = 8? /9x* and N(I) = VI/K + 1.
We invert the lesser order operator L,. In this case, the Adomian schema is
written as:

Vn=1 1I,=00000038L, 'Ly,—1 — L, 'A,-1.

where L, ! represents the integration in ¢ and A, ; are the Adomian
polynomials corresponding to N non-linearity and depending on Iy, I1, ..., 1,,—1.
The Adomian schema, based on equations (15) and (16), is written as:

S 1, = I(x,0) + 0.0000038L, 'Ly > 1, — LMY Ay,
n=0 "= =

with

M= ZA K+I

19)
Iy = I(x,0) = 0.0091 exp(—1100x)
I41 = 0.0000038L; 'Ly,1,, — L; ‘A,

and the A,, are calculated by equation (14).
Therefore, applying equation (19),

Iy = 0.0091¢1100%

tv
10000K e!1%0+ 4 91

I, = 0.0418418te 119 — 91



I = t%(0.961942982 X 10" K 3 + 0.2626104341 x 10M%e! %K 2
+0.2389754950 X 108K + 0.7248923349 X 10°e 1100
— 0.418418 x 10Me™ " VK2 4 0.455 X 100V 2Ke™)/

(10000K e 4+ 91)3

and thus the sum of the truncated series gives the following expression for I:

tV
10000K e!10%% + 91

+ 12(0.961942982 x 10" e? K 1 .2626104341 x 101010 2

I =0.0091e 19 1 0.0418418te 1% — 91

+ 0.2389754950 x 108K 4 0.7248923349 x 10°e 1100 (20)
— 0.418418 x 10" VK2 4 0.455 x 101V 2K &™) /
(10000K €% 4+ 91)3

The convergence of the series is the consequence of a theorem (Abbaoui ef al.,
2001) in which the nth derivative of the non-linear term N(/) = VI/K + 1 is
required to be bounded.

5. Comparison of results

The first point of note is that both the solution obtained by the finite differences
method is numerical with space and time discretization, whereas the solution
provided by the Adomian method does not discretize space or time and gives
an analytical solution in the form of a truncated series.

It has been demonstrated that both the methods produce results that are
highly satisfactory, in comparison with the experimental results for
concentrations of the inhibitor / obtained by microvoltametry in the
laboratory. For example, for a depth of x = 0.0125 cm, the results in Table I
were obtained.

Seconds Experimental 7 (mM/cm®) Adomian 7 (mM/cm®) Dif finite 7 (mM/cm®)
0 0 0.9716106491x 10~ ® 0

60 0.000370 0.0003709583422 0.000369648
120 0.001475 0.001478453962 0.001479623
180 0.003351 0.003322496574 0.003295641
240 0.005910 0.005903086180 0.005900843
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6. Conclusions
A diffusion model is described for a cerebral bio-chemistry problem, based on a
non-linear partial derivative equation.

We have described the solution to the equation obtained by a classical
resolution method in non-linear partial derivative equations — the finite
differences method. We have proved that the said method may also be
extended to non-linear reaction-diffusion partial derivative equations when
non-linearity is a decreasing function. The solution obtained is numerical with
space and time discretization.

The Adomian method is an effective tool for the resolution of certain kinds
of non-linear partial derivative equations. The equation for the model is solved
using the Adomian method, which does not discretize space or time and gives
the analytical solution in the form of a truncated series.

It has been demonstrated that both methods produce results that are highly
satisfactory, in comparison with the experimental results for concentrations of
the inhibitor / obtained by microvoltametry in the laboratory.
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